Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
EMBO Rep ; 25(2): 524-543, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38253688

RESUMO

Metabolites derived from the intestinal microbiota play an important role in maintaining skeletal muscle growth, function, and metabolism. Here, we found that D-malate (DMA) is produced by mouse intestinal microorganisms and its levels increase during aging. Moreover, we observed that dietary supplementation of 2% DMA inhibits metabolism in mice, resulting in reduced muscle mass, strength, and the number of blood vessels, as well as the skeletal muscle fiber type I/IIb ratio. In vitro assays demonstrate that DMA decreases the proliferation of vascular endothelial cells and suppresses the formation of blood vessels. In vivo, we further demonstrated that boosting angiogenesis by muscular VEGFB injection rescues the inhibitory effects of D-malate on muscle mass and fiber area. By transcriptomics analysis, we identified that the mechanism underlying the effects of DMA depends on the elevated intracellular acetyl-CoA content and increased Cyclin A acetylation rather than redox balance. This study reveals a novel mechanism by which gut microbes impair muscle angiogenesis and may provide a therapeutic target for skeletal muscle dysfunction in cancer or aging.


Assuntos
Células Endoteliais , Microbiota , Camundongos , Animais , Células Endoteliais/metabolismo , Acetilação , Ciclina A/metabolismo , 60489 , Malatos/metabolismo , Músculo Esquelético/metabolismo , Envelhecimento
2.
Mol Biotechnol ; 2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37642828

RESUMO

Tamoxifen (TAM) is commonly administered to a variety of inducible or conditional transgenic mice that contain Cre recombinase fused with ER. While the impacts of adult TAM treatment are well documented in the field of adipose biology, the long-term effects of postnatal TAM treatment on adult life are still understudied. In this study, we investigated whether postnatal TAM treatment had long-lasting effects on adult body composition and adiposity in male and female mice, fed either with chow or a high-fat diet (HFD). We found that postnatal, but not adult, TAM treatment had long-lasting impacts on female mice, resulting in lower body weight, lower fat mass, and smaller adipocytes. In contrast, postnatal exposure to TAM impaired male but not female cold-induced adipose beiging capacity. Interestingly, upon HFD feeding, the sex-dependent effects of TAM on adult life disappeared, and both female and male mice showed a more obese phenotype with impaired glucose tolerance. These findings suggest that postnatal TAM injection exerts a long-lasting impact on adipose tissue in adult life in a sex- and diet-dependent manner.

3.
Nat Commun ; 14(1): 2731, 2023 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-37169793

RESUMO

A potential therapeutic target to curb obesity and diabetes is thermogenic beige adipocytes. However, beige adipocytes quickly transition into white adipocytes upon removing stimuli. Here, we define the critical role of cyclin dependent kinase inhibitor 2A (Cdkn2a) as a molecular pedal for the beige-to-white transition. Beige adipocytes lacking Cdkn2a exhibit prolonged lifespan, and male mice confer long-term metabolic protection from diet-induced obesity, along with enhanced energy expenditure and improved glucose tolerance. Mechanistically, Cdkn2a promotes the expression and activity of beclin 1 (BECN1) by directly binding to its mRNA and its negative regulator BCL2 like 1 (BCL2L1), activating autophagy and accelerating the beige-to-white transition. Reactivating autophagy by pharmacological or genetic methods abolishes beige adipocyte maintenance induced by Cdkn2a ablation. Furthermore, hyperactive BECN1 alone accelerates the beige-to-white transition in mice and human. Notably, both Cdkn2a and Becn1 exhibit striking positive correlations with adiposity. Hence, blocking Cdkn2a-mediated BECN1 activity holds therapeutic potential to sustain beige adipocytes in treating obesity and related metabolic diseases.


Assuntos
Adipócitos Bege , Tecido Adiposo Bege , Obesidade , Animais , Humanos , Masculino , Camundongos , Adipócitos Bege/metabolismo , Adipócitos Brancos/metabolismo , Tecido Adiposo Bege/metabolismo , Tecido Adiposo Branco/metabolismo , Adiposidade/genética , Adiposidade/fisiologia , Obesidade/genética , Obesidade/metabolismo , Termogênese
4.
Mol Cell Endocrinol ; 573: 111968, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37244600

RESUMO

The development of white adipose tissue (WAT) occurs during distinct embryonic and postnatal stages, and it is subsequently maintained throughout life. However, the specific mediators and mechanisms responsible for WAT development during different phases remain unclear. In this study, we investigate the role of the insulin receptor (IR) in regulating adipogenesis and adipocyte function within adipocyte progenitor cells (APCs) during WAT development and homeostasis. We use two in vivo adipose lineage tracking and deletion systems to delete IR either in embryonic APCs or adult APCs, respectively, to explore the specific requirements of IR during WAT development and WAT homeostasis in mice. Our data suggest that IR expression in APCs may not be essential for adult adipocyte differentiation but appears to be crucial for adipose tissue development. We reveal a surprising divergent role of IR in APCs during WAT development and homeostasis.


Assuntos
Adipócitos , Receptor de Insulina , Camundongos , Animais , Receptor de Insulina/metabolismo , Adipócitos/metabolismo , Tecido Adiposo Branco/metabolismo , Obesidade/metabolismo , Adipogenia , Células-Tronco
5.
Sci Adv ; 8(18): eabn2879, 2022 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-35507647

RESUMO

Previously, we found that α-ketoglutaric acid (AKG) stimulates muscle hypertrophy and fat loss through 2-oxoglutarate receptor 1 (OXGR1). Here, we demonstrated the beneficial effects of AKG on glucose homeostasis in a diet-induced obesity (DIO) mouse model, which are independent of OXGR1. We also showed that AKG effectively decreased blood glucose and hepatic gluconeogenesis in DIO mice. By using transcriptomic and liver-specific serpina1e deletion mouse model, we further demonstrated that liver serpina1e is required for the inhibitory effects of AKG on hepatic gluconeogenesis. Mechanistically, we supported that extracellular AKG binds with a purinergic receptor, P2RX4, to initiate the solute carrier family 25 member 11 (SLC25A11)-dependent nucleus translocation of intracellular AKG and subsequently induces demethylation of lysine 27 on histone 3 (H3K27) in the seprina1e promoter region to decrease hepatic gluconeogenesis. Collectively, these findings reveal an unexpected mechanism for control of hepatic gluconeogenesis using circulating AKG as a signal molecule.


Assuntos
Diabetes Mellitus , Hiperglicemia , Animais , Diabetes Mellitus/metabolismo , Gluconeogênese , Hiperglicemia/tratamento farmacológico , Ácidos Cetoglutáricos/metabolismo , Ácidos Cetoglutáricos/farmacologia , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL
6.
Endocrinol Diabetes Metab ; 4(3): e00253, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34277977

RESUMO

AIM: Heparin, a widely used antithrombotic drug has many other anticoagulant-independent physiological functions. Here, we elucidate a novel role of heparin in glucose homeostasis, suggesting an approach for developing heparin-targeted therapies for diabetes. METHODS: For serum heparin levels and correlation analysis, 122 volunteer's plasma, DIO (4 weeks HFD) and db/db mice serums were collected and used for spectrophotometric determination. OGTT, ITT, 2-NBDG uptake and muscle GLUT4 immunofluorescence were detected in chronic intraperitoneal injection of heparin or heparinase (16 days) and muscle-specific loss-of-function mice. In 293T cells, the binding of insulin to its receptor was detected by fluorescence resonance energy transfer (FRET), Myc-GLUT4-mCherry plasmid was used in GLUT4 translocation. In vitro, C2C12 cells as mouse myoblast cells were further verified the effects of heparin on glucose homeostasis through 2-NBDG uptake, Western blot and co-immunoprecipitation. RESULTS: Serum concentrations of heparin are positively associated with blood glucose levels in humans and are significantly increased in diet-induced and db/db obesity mouse models. Consistently, a chronic intraperitoneal injection of heparin results in hyperglycaemia, glucose intolerance and insulin resistance. These effects are independent of heparin's anticoagulant function and associated with decreases in glucose uptake and translocation of glucose transporter type 4 (GLUT4) in skeletal muscle. By using a muscle-specific loss-of-function mouse model, we further demonstrated that muscle GLUT4 is required for the detrimental effects of heparin on glucose homeostasis. CONCLUSIONS: Heparin reduced insulin binding to its receptor by interacting with insulin and inhibited insulin-mediated activation of the PI3K/Akt signalling pathway in skeletal muscle, which leads to impaired glucose uptake and hyperglycaemia.


Assuntos
Fosfatidilinositol 3-Quinases , Receptor de Insulina , Animais , Glucose/metabolismo , Glucose/farmacologia , Heparina/metabolismo , Heparina/farmacologia , Insulina/metabolismo , Camundongos , Músculo Esquelético/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol 3-Quinases/farmacologia , Receptor de Insulina/metabolismo , Receptor de Insulina/farmacologia
9.
Front Physiol ; 12: 647743, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33746782

RESUMO

Hypoxanthine (Hx), an intermediate metabolite of the purine metabolism pathway which is dramatically increased in blood and skeletal muscle during muscle contraction and metabolism, is characterized as a marker of exercise exhaustion. However, the physiological effects of Hx on skeletal muscle remain unknown. Herein, we demonstrate that chronic treatment with Hx through dietary supplementation resulted in skeletal muscle fatigue and impaired the exercise performance of mice without affecting their growth and skeletal muscle development. Hx increased the uncoupling protein 2 (UCP2) expression in the skeletal muscle, which led to decreased energy substrate storage and enhanced glycolysis. These effects could also be verified in acute treatment with Hx through intraperitoneal injection. In addition, muscular specifically knockout of UCP2 through intra-muscle tissue injection of adenovirus-associated virus reversed the effects of Hx. In conclusion, we identified a novel role of Hx in the skeletal muscular fatigue mediated by UCP2-dependent mitochondrial uncoupling. This finding may shed light on the pathological mechanism of clinical muscle dysfunctions due to abnormal metabolism, such as muscle fatigue and weakness.

10.
Front Vet Sci ; 8: 808863, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35097053

RESUMO

Endurance training and explosive strength training, with different contraction protein and energy metabolism adaptation in skeletal muscle, are both beneficial for physical function and quality of life. Our previous study found that chronic succinate feeding enhanced the endurance exercise of mice by inducing skeletal muscle fiber-type transformation. The purpose of this study is to investigate the effect of acute succinate administration on skeletal muscle explosive strength and its potential mechanism. Succinate was injected to mature mice to explore the acute effect of succinate on skeletal muscle explosive strength. And C2C12 cells were used to verify the short-term effect of succinate on oxidative phosphorylation. Then the cells interfered with succinate receptor 1 (SUCNR1) siRNA, and the SUCNR1-GKO mouse model was used for verifying the role of SUCNR1 in succinate-induced muscle metabolism and expression and explosive strength. The results showed that acute injection of succinate remarkably improved the explosive strength in mice and also decreased the ratio of nicotinamide adenine dinucleotide (NADH) to NAD+ and increased the mitochondrial complex enzyme activity and creatine kinase (CK) activity in skeletal muscle tissue. Similarly, treatment of C2C12 cells with succinate revealed that succinate significantly enhanced oxidative phosphorylation with increased adenosine triphosphate (ATP) content, CK, and the activities of mitochondrial complex I and complex II, but with decreased lactate content, reactive oxygen species (ROS) content, and NADH/NAD+ ratio. Moreover, the succinate's effects on oxidative phosphorylation were blocked in SUCNR1-KD cells and SUCNR1-KO mice. In addition, succinate-induced explosive strength was also abolished by SUCNR1 knockout. All the results indicate that acute succinate administration increases oxidative phosphorylation and skeletal muscle explosive strength in a SUCNR1-dependent manner.

11.
Sci Rep ; 10(1): 18721, 2020 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-33116217

RESUMO

Editor's Note: this Article has been retracted; the Retraction Note is available at https://www.nature.com/articles/s41598-020-72330-x.

13.
EMBO J ; 39(7): e103304, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32104923

RESUMO

Beneficial effects of resistance exercise on metabolic health and particularly muscle hypertrophy and fat loss are well established, but the underlying chemical and physiological mechanisms are not fully understood. Here, we identified a myometabolite-mediated metabolic pathway that is essential for the beneficial metabolic effects of resistance exercise in mice. We showed that substantial accumulation of the tricarboxylic acid cycle intermediate α-ketoglutaric acid (AKG) is a metabolic signature of resistance exercise performance. Interestingly, human plasma AKG level is also negatively correlated with BMI. Pharmacological elevation of circulating AKG induces muscle hypertrophy, brown adipose tissue (BAT) thermogenesis, and white adipose tissue (WAT) lipolysis in vivo. We further found that AKG stimulates the adrenal release of adrenaline through 2-oxoglutarate receptor 1 (OXGR1) expressed in adrenal glands. Finally, by using both loss-of-function and gain-of-function mouse models, we showed that OXGR1 is essential for AKG-mediated exercise-induced beneficial metabolic effects. These findings reveal an unappreciated mechanism for the salutary effects of resistance exercise, using AKG as a systemically derived molecule for adrenal stimulation of muscle hypertrophy and fat loss.


Assuntos
Ácidos Cetoglutáricos/sangue , Atrofia Muscular/genética , Receptores Purinérgicos P2/genética , Treinamento de Força/métodos , Adulto , Idoso , Animais , Linhagem Celular , Feminino , Técnicas de Inativação de Genes , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Modelos Animais , Atrofia Muscular/metabolismo , Receptores Purinérgicos P2/metabolismo
14.
EMBO Rep ; 20(9): e47892, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31318145

RESUMO

The conversion of skeletal muscle fiber from fast twitch to slow-twitch is important for sustained and tonic contractile events, maintenance of energy homeostasis, and the alleviation of fatigue. Skeletal muscle remodeling is effectively induced by endurance or aerobic exercise, which also generates several tricarboxylic acid (TCA) cycle intermediates, including succinate. However, whether succinate regulates muscle fiber-type transitions remains unclear. Here, we found that dietary succinate supplementation increased endurance exercise ability, myosin heavy chain I expression, aerobic enzyme activity, oxygen consumption, and mitochondrial biogenesis in mouse skeletal muscle. By contrast, succinate decreased lactate dehydrogenase activity, lactate production, and myosin heavy chain IIb expression. Further, by using pharmacological or genetic loss-of-function models generated by phospholipase Cß antagonists, SUNCR1 global knockout, or SUNCR1 gastrocnemius-specific knockdown, we found that the effects of succinate on skeletal muscle fiber-type remodeling are mediated by SUNCR1 and its downstream calcium/NFAT signaling pathway. In summary, our results demonstrate succinate induces transition of skeletal muscle fiber via SUNCR1 signaling pathway. These findings suggest the potential beneficial use of succinate-based compounds in both athletic and sedentary populations.


Assuntos
Fibras Musculares Esqueléticas/efeitos dos fármacos , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Ácido Succínico/farmacologia , Animais , Ciclo do Ácido Cítrico/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Contração Muscular/efeitos dos fármacos , Fadiga Muscular/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Cadeias Pesadas de Miosina/metabolismo , Consumo de Oxigênio/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
15.
Metabolism ; 79: 10-23, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29080813

RESUMO

OBJECTIVE: Growth hormone stimulates growth by increasing insulin-like growth factor 1 expression and secretion. In the presence of insufficient nutrients, GH increases, whereas IGF-1 expression becomes severely suppressed, leading to GH resistance. This study aimed to explore the effect of arginine (Arg) on GH resistance during malnutrition and to describe its underlying mechanism. METHODS: C57BL/6J mice were injected intraperitoneally with Arg for 1h or subjected to caloric restriction with Arg supplement in drinking water for 18days. HepG2 cells were exposed to different Arg concentrations for 24h. Signaling pathway agonists/inhibitors, siRNA, and overexpression plasmids were used to investigate the underlying molecular mechanism. Liver-specific toll-like receptor (TLR4) knockout mice were utilized to clarify the role of TLR4 in Arg-induced IGF-I expression and secretion. RESULTS: Arg inhibited the TLR4 downstream pathway by binding to TLR4 and consequently activated Janus kinase 2/signal transducer and activator of transcription 5 signaling pathway. As a result, IGF-1 transcription and secretion increased. Arg activity was absent in liver-specific TLR4 knockout mice and was greatly suppressed in liver with overexpressed TLR4, suggesting that hepatic TLR4 was required and sufficient to induce GH resistance. By contrast, the mammalian target of rapamycin pathway was unnecessary for Arg activity. Arg not only significantly increased IGF-1 expression and secretion under acute fasting and chronic CR conditions but also attenuated body weight loss. CONCLUSIONS: Our results demonstrate a previously unappreciated pathway involving Arg that reverses GH resistance and alleviates malnutrition-induced growth restriction through the inhibition of TLR4-mediated inflammatory pathway.


Assuntos
Arginina/farmacologia , Hormônio do Crescimento/metabolismo , Inflamação/metabolismo , Receptor 4 Toll-Like/antagonistas & inibidores , Animais , Humanos , Fator de Crescimento Insulin-Like I/metabolismo , Janus Quinase 2/biossíntese , Janus Quinase 2/genética , Masculino , Desnutrição/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transporte Proteico , RNA Interferente Pequeno/metabolismo , Fator de Transcrição STAT5/biossíntese , Fator de Transcrição STAT5/genética , Transdução de Sinais/efeitos dos fármacos , Receptor 4 Toll-Like/genética
16.
FASEB J ; 32(1): 488-499, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28939592

RESUMO

Skeletal muscle atrophy due to excessive protein degradation is the main cause for muscle dysfunction, fatigue, and weakening of athletic ability. Endurance exercise is effective to attenuate muscle atrophy, but the underlying mechanism has not been fully investigated. α-Ketoglutarate (AKG) is a key intermediate of tricarboxylic acid cycle, which is generated during endurance exercise. Here, we demonstrated that AKG effectively attenuated corticosterone-induced protein degradation and rescued the muscle atrophy and dysfunction in a Duchenne muscular dystrophy mouse model. Interestingly, AKG also inhibited the expression of proline hydroxylase 3 (PHD3), one of the important oxidoreductases expressed under hypoxic conditions. Subsequently, we identified the ß2 adrenergic receptor (ADRB2) as a downstream target for PHD3. We found AKG inhibited PHD3/ADRB2 interaction and therefore increased the stability of ADRB2. In addition, combining pharmacologic and genetic approaches, we showed that AKG rescues skeletal muscle atrophy and protein degradation through a PHD3/ADRB2 mediated mechanism. Taken together, these data reveal a mechanism for inhibitory effects of AKG on muscle atrophy and protein degradation. These findings not only provide a molecular basis for the potential use of exercise-generated metabolite AKG in muscle atrophy treatment, but also identify PHD3 as a potential target for the development of therapies for muscle wasting.-Cai, X., Yuan, Y., Liao, Z., Xing, K., Zhu, C., Xu, Y., Yu, L., Wang, L., Wang, S., Zhu, X., Gao, P., Zhang, Y., Jiang, Q., Xu, P., Shu, G. α-Ketoglutarate prevents skeletal muscle protein degradation and muscle atrophy through PHD3/ADRB2 pathway.


Assuntos
Ácidos Cetoglutáricos/uso terapêutico , Proteínas Musculares/metabolismo , Distrofia Muscular de Duchenne/tratamento farmacológico , Pró-Colágeno-Prolina Dioxigenase/metabolismo , Receptores Adrenérgicos beta 2/metabolismo , Animais , Corticosterona/farmacologia , Modelos Animais de Doenças , Masculino , Redes e Vias Metabólicas/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos mdx , Fibras Musculares Esqueléticas/efeitos dos fármacos , Fibras Musculares Esqueléticas/patologia , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Atrofia Muscular/metabolismo , Atrofia Muscular/patologia , Atrofia Muscular/prevenção & controle , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/patologia , Estabilidade Proteica/efeitos dos fármacos , Proteólise/efeitos dos fármacos
17.
Oncotarget ; 8(59): 99470-99481, 2017 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-29245916

RESUMO

Laminarin, a type of ß-glucan isolated from brown seaweeds, exhibits verity of physiological activities, which include immunology modulation and antitumor function. To investigate the effect of laminarin on energy homeostasis, mice were orally administrated with laminarin to test food intake, fat deposition, and glucose homeostasis. Chronically, laminarin treatment significantly decreases high-fat-diet-induced body weight gain and fat deposition and reduces blood glucose level and glucose tolerance. Acutely, laminarin enhances serum glucagon-like peptide-1 (GLP-1) content and the mRNA expression level of proglucagon and prohormone convertase 1 in ileum. Subsequently, laminarin suppresses the food intake of mice, the hypothalamic AgRP neuron activity, and AgRP expression but activates pancreatic function. Furthermore, laminarin-induced appetite reduction was totally blocked by Exendin (9-39), a specific competitive inhibitor of GLP-1 receptor. Then, STC-1 cells were adopted to address the underlying mechanism, by which laminarin promoted GLP-1 secretion in vitro. Results showed that laminarin dose-dependently promoted GLP-1 secretion and c-Fos protein expression in STC-1 cells, which were independent of Dectin-1 and CD18. Interestingly, BAPTA-AM, a calcium-chelating agent, potently attenuated laminarin-induced [Ca2+]i elevation, c-Fos expression, and GLP-1 secretion. In summary, our data support that laminarin counteracts diet-induced obesity and stimulates GLP-1 secretion via [Ca2+]i; this finding provides an experimental basis for laminarin application to treat obesity and maintain glucose homeostasis.

18.
Cell Rep ; 20(10): 2455-2467, 2017 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-28877477

RESUMO

Although the widely used anticoagulant drug heparin has been shown to have many other biological functions independent of its anticoagulant role, its effects on energy homeostasis are unknown. Here, we demonstrate that heparin level is negatively associated with nutritional states and that heparin treatment increases food intake and body weight gain. By using electrophysiological, pharmacological, molecular biological, and chemogenetic approaches, we provide evidence that heparin increases food intake by stimulating AgRP neurons and increasing AgRP release. Our results support a model whereby heparin competes with insulin for insulin receptor binding on AgRP neurons, and by doing so it inhibits FoxO1 activity to promote AgRP release and feeding. Heparin may be a potential drug target for food intake regulation and body weight control.


Assuntos
Proteína Relacionada com Agouti/metabolismo , Ingestão de Alimentos/efeitos dos fármacos , Heparina/farmacologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Receptor de Insulina/metabolismo , Animais , Peso Corporal/efeitos dos fármacos , Eletrofisiologia , Proteína Forkhead Box O1/metabolismo , Insulina/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL
19.
Mol Med Rep ; 16(5): 7361-7366, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28944867

RESUMO

It is well known that endurance training is effective to attenuate skeletal muscle atrophy. Succinate is a typical TCA metabolite, of which exercise could dramatically increase the content. The present study aimed to investigate the effect of succinate on protein synthesis in skeletal muscle, and try to delineate the underlying mechanism. The in vitro study revealed that succinate dose­dependently increased protein synthesis in C2C12 myotube along with the enhancement of phosphorylation levels of AKT Serine/Threonine Kinase 1(Akt), mammalian target of rapamycin, S6, eukaryotic translation initiation factor 4E, 4E binding protein 1 and forkhead box O (FoxO) 3a. Furthermore, it was demonstrated that 20 mM succinate markedly increased [Ca2+]i. Then, the phospho­extracellular regulated kinase (Erk), ­Akt level and the crosstalk between Erk and Akt were elevated in response to succinate. Notably, the Erk antagonist (U0126) or mTOR inhibitor (rapamycin) abolished the effect of succinate on protein synthesis. The in vivo study verified that succinate dose­dependently increased the protein synthesis, in addition to phosphorylation levels of Erk, Akt and FoxO3a in gastrocnemius muscle. In summary, these findings demonstrated that succinate promoted skeletal muscle protein deposition via Erk/Akt signaling pathway.


Assuntos
Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Biossíntese de Proteínas/efeitos dos fármacos , Ácido Succínico/farmacologia , Animais , Butadienos/farmacologia , Cálcio/análise , Linhagem Celular , Fatores de Transcrição Forkhead/metabolismo , Imunoprecipitação , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteína Quinase 1 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Músculo Esquelético/citologia , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Nitrilas/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Sirolimo/farmacologia , Serina-Treonina Quinases TOR/metabolismo
20.
Sci Rep ; 6: 26802, 2016 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-27225984

RESUMO

Skeletal muscle weight loss is accompanied by small fiber size and low protein content. Alpha-ketoglutarate (AKG) participates in protein and nitrogen metabolism. The effect of AKG on skeletal muscle hypertrophy has not yet been tested, and its underlying mechanism is yet to be determined. In this study, we demonstrated that AKG (2%) increased the gastrocnemius muscle weight and fiber diameter in mice. Our in vitro study also confirmed that AKG dose increased protein synthesis in C2C12 myotubes, which could be effectively blocked by the antagonists of Akt and mTOR. The effects of AKG on skeletal muscle protein synthesis were independent of glutamate, its metabolite. We tested the expression of GPR91 and GPR99. The result demonstrated that C2C12 cells expressed GPR91, which could be upregulated by AKG. GPR91 knockdown abolished the effect of AKG on protein synthesis but failed to inhibit protein degradation. These findings demonstrated that AKG promoted skeletal muscle hypertrophy via Akt/mTOR signaling pathway. In addition, GPR91 might be partially attributed to AKG-induced skeletal muscle protein synthesis.


Assuntos
Ácidos Cetoglutáricos/farmacologia , Proteínas Musculares/biossíntese , Músculo Esquelético/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/fisiologia , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/fisiologia , Animais , Linhagem Celular , Técnicas de Silenciamento de Genes , Ácido Glutâmico/metabolismo , Ácido Glutâmico/farmacologia , Hipertrofia/induzido quimicamente , Hipertrofia/metabolismo , Ácidos Cetoglutáricos/toxicidade , Camundongos Endogâmicos C57BL , Fibras Musculares Esqueléticas/efeitos dos fármacos , Fibras Musculares Esqueléticas/ultraestrutura , Proteínas Musculares/genética , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Fosforilação , Processamento de Proteína Pós-Traducional , Interferência de RNA , RNA Interferente Pequeno/genética , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Receptores Acoplados a Proteínas G/biossíntese , Receptores Acoplados a Proteínas G/genética , Receptores Purinérgicos P2/biossíntese , Receptores Purinérgicos P2/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...